

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0493 of 16 August 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Walraven concrete screw WCS1

Concrete screw of sizes 6, 8, 10, 12 and 14 mm for use in concrete

J. van Walraven Holding B.V. Industrieweg 5 3641 RK Mijdrecht NIEDERLANDE

Walraven Factory A4

16 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchor for use in concrete", ETAG 001 Part 3: "Undercut anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 and European Assessment Document (EAD) 330011-00-0601.

European Technical Assessment ETA-16/0493

Page 2 of 16 | 16 August 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0493

Page 3 of 16 | 16 August 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Walraven concrete screw WCS1 is an anchor in size 6, 8, 10, 12 and 14 mm made of galvanised steel respectively steel with zinc flake coating, made of stainless or high corrosion resistant steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Product performance for static and quasi static action	See Annex C 1 and C 2
Product performance for seismic category C1	See Annex C 4
Displacements under tension and shear loads	See Annex C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C 5

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011, and European Assessment Document EAD 330011-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-16/0493

Page 4 of 16 | 16 August 2016

English translation prepared by DIBt

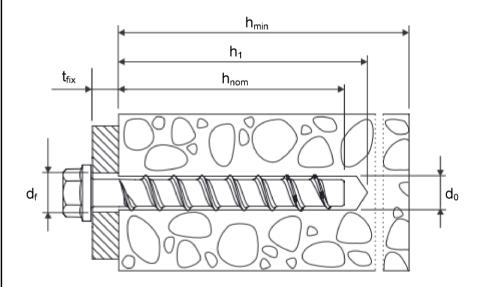
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 16 August 2016 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentTempel

product and installed condition


Walraven concrete screw WCS1

carbon steel

stainless steel A4 (sst) and HCR

 d_0 = nominal drill bit diameter h_{nom} = nominal anchorage depth h_1 = depth of the drill hole

 h_{min} = minimum thickness of member

 t_{fix} = thickness of fixture

d_f = diameter of clearance hole in the fixture

Walraven concrete screw WCS1	
Product description	Annex A 1
Installed condition	

Table A1: materials and variants

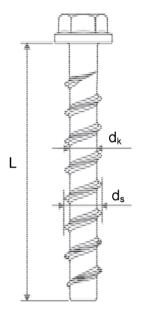
part	name			Mat	erial		
1,	Concrete						
2,	screw	WCS1		Steel EN 10263-4	4 galv	anized acc. to	o EN ISO 4042 or
				zinc flake coating	acc.	to EN ISO 10)683 (≥ 5µm)
3,		WCS1 A4 sst		1.4401, 1.4404, 1	1.4571	I, 1.4578	
4,		WCS1 HCR		1.4529			
5,							WCS1
6,							WCS1 A4 sst
7,							WCS1 HCR
В,		characteristic st	eel yield st	rength	f _{yk}	[N/mm²]	560
9,		characteristic st	eel ultimat	e strength	f _{uk}	[N/mm²]	700
10, 11		elongation at ru	pture		A ₅	[%]	≤ 8
			1)	Anchor version e.g. WCS1HS 8			ead and hexagon socket
-3		0	2)	Anchor version e.g. WCS1HD 8			ead and hexagon drive
		(3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	3)	Anchor version e.g. WCS1HT 8			gon head and TORX
		(F) (S)	4)	Anchor version e.g. WCS1H 8x		asher and he	exagon head
		3, 0	5)	Anchor version e.g. WCS1HH 8			gon head and
		25.00	6)	Anchor version e.g. WCS1C 8x			ead
=			7)	Anchor version e.g. WCS1P 6x-		an head	
=		201	8)	Anchor version e.g. WCS1PL 8			d
			9)	Anchor version e.g. WCS1MC			nead and connection thread
	•	©	10)	Anchor version e.g. WCS1M 6x			and connection thread
			11)	Anchor version e.g. WCS1N 6x			and hexagon drive

Walraven concrete screw WCS1	A A 0
Product descriptions	Annex A 2
Materials und versions	

Table A2: dimensions and markings

Anchor size WCS1	6		8			10			
Nominal ambadment double b	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth h _{nom} [mm]		40	55	45	55	65	55	75	85
Length of the anchor L ≤	[mm]				500				
Diameter of shaft d _k	[mm]	5	,1		7,1			9,1	
Diameter of thread d _s	[mm]	7	5		10,6		12,6		
Anchor size WCS1		12				14			
Noneinal ambadasant danti b	F1	h _{nom1}	h _{nom2}	h _{nom}	3 l	1 _{nom1}	h _{nom}	2 I	1 _{nom3}
Nominal embedment depth hnor	ո [mm]	h _{nom1}	h _{nom2}	h _{nom}	3 I	າ _{nom1} 75	h _{nom}	2	1 _{nom3}
Nominal embedment depth h_{non} Length of the anchor $L \le$	[mm]				500			2	

Marking: WCS1 Anchor type:


Anchor type: TSM
Anchor size: 10
Length of the anchor: 100

WCS1 A4 sst
Anchor type: TSM
Anchor size: 10
Length of the anchor: 100
Material: A4 sst

WCS1 HCR
Anchor type: TSM
Anchor size: 10
Length of the anchor: 100
Material: HCR

Walraven concrete screw WCS1

Product descriptions

Dimensions and markings

Annex A3

Intended use

Anchorages subject to:

- · static and quasi-static loads, all sizes and all embedment depth,
- Used for anchorages with requirements related to resistance of fire, all sizes and all embedment depth,
- used for anchorages with seismic actions category C1, sizes 8-14 for maximum embedment depth h_{nom3}.

Base materials:

- reinforced and unreinforced concrete according to EN 206-1:2000-12,
- strength classes C20/25 to C50/60 according to EN 206-1:2000-12.
- cracked and uncracked concrete.

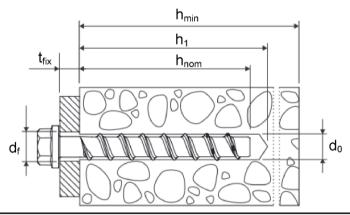
Use conditions (Environmental conditions):

- The anchor may only be used in dry internal conditions: All screw types,
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition no particular aggressive conditions exits: screw types made of stainless steel with marking A4,
- Structural subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if particular aggressive conditions exits: screw types made of stainless steel with marking HCR.
- Note: Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to
 supports, etc.),
- Anchorages under static or quasi-static actions are designed for design Method A in accordance with:
 - ETAG 001, Annex C, Edition August 2010 or
 - CEN/TS 1992-4:2009.
- Anchorages under seismic actions are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013.
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed.
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4:2009, Annex D (It must be ensured that local spalling of the concrete cover does not occur).
- The design method according to ETAG 001, Annex C also applies for the specified diameter d_f of clearance hole in the fixture in Annex B2. Table B1.
- The design method according to CEN/TS 1992-4 applies for the specified diameter d_f of clearance hole in the fixture in Annex B2, Table B1.
- In CEN/TS 1992-4-1, section 5.2.3.1 the 3. indent will be replaced as follow: only the most unfavorable anchors
 of an anchor group take up shear loads, if diameter of the clearance hole d_f is larger than given in
 CEN/TS 1992-4-1, Table 1.
- The condition according to CEN / TS 1992-4-1, Section 5.2.3.3, no. 3) are also fulfilled for the specified diameter d_f of clearance hole in the fixture in Annex B2, Table B1.

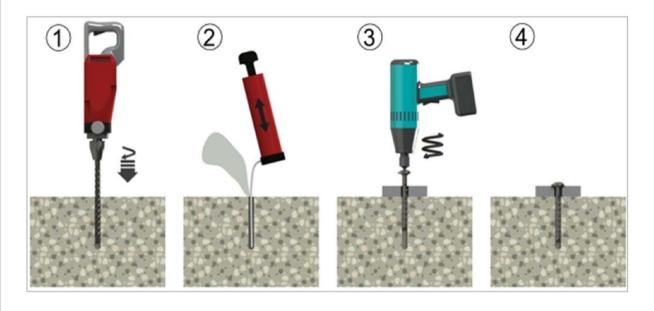
Installation:


- Hammer drilling only.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.
- The drill hole may be filled with injection mortar Chemofast CF-T 300 V.
- Adjustability according to Annex B4: sizes 8-14, all anchorage depths.

Walraven concrete screw WCS1	
Intended use	Annex B 1
Specifications	

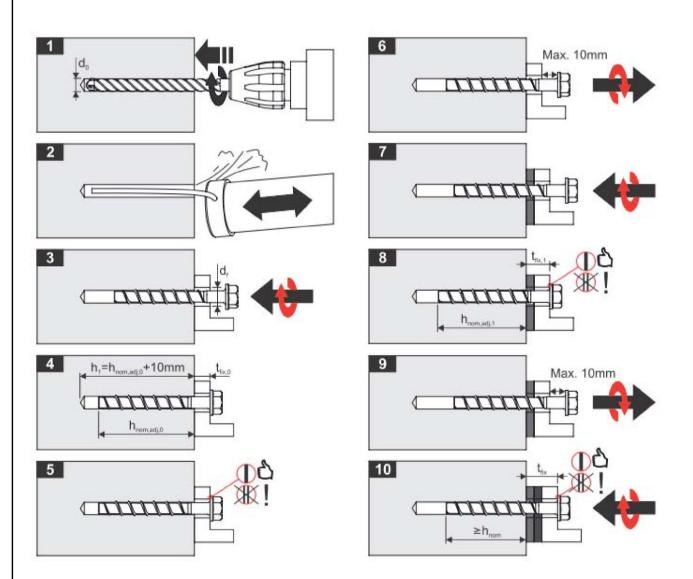
Table B1: Installation parameters

Anchor size WCS1			E	6		8			10	
Nominal embedment depth h _{nom} [mr	n]		h _{nom1}	h _{nom2} 55	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1} 55	h _{nom2}	h _{nom3}
Nominal drill bit diameter	d ₀	[mm]	6	3		8			10	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,4	40		8,45			10,45	
Depth of drill hole	h ₁ ≥	[mm]	45	60	55	65	75	65	85	95
Diameter of clearing hole in the fix-ture	d _f ≤	[mm]	8	3		12			14	
Installation torque for version with connection thread	T _{inst} ≤	[Nm]	1	10 20				40		
Impact screw driver		[Nm]	Ma 16		ue acco	ording to 300	manufa	acturer's instructions 400		
Anchor size WCS1			12				14			
Nominal embedment depth h _{nom} [mr	n]		h _{nom}	ı h	nom2	h _{nom3}	h _{nom}		000	h _{nom3}
Nominal drill bit diameter	d ₀	[mm]			12		1		14	
Cutting diameter of drill bit	d _{cut} ≤	[mm]		1	2,50			14	,50	
Depth of drill hole	h ₁ ≥	[mm]	75		95	110	85	1	10	125
Diameter of clearing hole in the fix-ture	d _f ≤	[mm]		·	16			,	18	
Installation torque for version with connection thread metrical	T _{inst} ≤	[Nm]			60				30	
Impact screw driver			Ma		ue acco 500	ording to	manufa		instructi 00	ons


Walraven concrete screw WCS1	A D 0
Intended use	Annex B 2
Installation parameters	

<u>Table B2: Minimum thickness of member, minimum edge distance and minimum spacing</u>

Anchor size WCS1	(8		10						
Nominal embedment depth h _{nom} [mm]			h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
			40	55	45	55	65	55	75	85	
Minimum thickness of member	h _{min}	[mm]	10	100			120	100	130	130	
Minimum edge distance	C _{min}	[mm]	40		40	5	50		50		
Minimum spacing	S _{min}	[mm]	4	40	5	0	50				
Anchor size WCS1			12				14				
No minor lamba dan antida	-41- 1-	f1	h _{nom1}	h _{nom2}	h _{nom}	3	h _{nom1}	h _{nom2}		h _{nom3}	
Nominal embedment depth h _{nom} [mm]		_n [mm]	65	85	100		75			115	
Minimum thickness of member	h _{min}	[mm]	120	130	150		130	150		170	
Minimum edge distance	C _{min}	[mm]	5	0	70		50	70			
Minimum spacing	S _{min}	[mm]	5	50		70 50		70			


Installation instructions

	Walraven concrete screw WCS1	
ľ	Intended use	Annex B3
	Minimum thickness of member, minimum spacing, minimum edge distance and installation instructions	

Installation instructions

The anchor may be adjusted maximum two times while the anchor may turn back at most 10 mm. The total allowed thickness of shims added during the adjustment process is 10mm.

The final embedment depth after adjustment process must be equal or larger than hnom-

Walraven concrete screw WCS1	
Intended use Installation instruction for adjustability	Annex B 4

<u>Table C1: Characteristic values for design method A according to ETAG 001, Annex C</u> <u>or CEN/TS 1992-4 for WCS1 6, 8 and 10</u>

Anchor size WCS1				6			8		10				
Nominal embedment dep	th h	[mm]		h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}		
Nominal embedment dep	III IInom	[]		40	55	45	55	65	55	75	85		
steel failure for tension	oad												
	I	$N_{Rk,s}$	[kN]	14,	0		27,0		45,0				
characteristic load		$V_{Rk,s}$	[kN]	7,0)		17,0		34,0				
		k ₂ 1)	[-]	0,8	3		0,8			0,8			
		M ⁰ _{Rk,s}	[Nm]	10,	9		26,0			56,0			
pull-out failure													
characteristic tension load in cracked concrete C20/25		$N_{Rk,p}$	[kN]	2,0	4,0	5,0	9,0	12,0	9,0				
characteristic tension load in uncracked concrete C20/25		$N_{Rk,p}$	[kN]	4,0	9,0	7,5	12,0	16,0	12,0	20,0	25,0		
ta a constant for the c			C30/37	1,22									
increasing factor for N _{Rk.p}	'	Ψ _C	C40/50	1,41									
TOT TYRK,p			C50/60	1,55									
concrete cone and spli	itting fa	ilure											
effective anchorage dep		h _{ef}	[mm]	31	44	35	43	52	43	60	68		
factor for cracked		k _{cr} 1)	[-]	7,2									
uncracke	d l	k _{ucr} 1)	[-]				10,1						
concrete spacing		S _{cr,N}	[mm]				3 x h	ef					
cone failure edge dist	ance o	C _{cr,N}	[mm]				1,5 x l	ef					
splitting spacing		Scr,Sp	[mm]	120	160	120	140	150	140	34,0 0,8 56,0 Pull-out f is not de 20,0	210		
failure edge dist	ance	C _{cr,Sp}	[mm]	60	80	60	70	75	70	90	105		
installation safety factor		$\gamma_2^{2)}$ $\gamma_{\text{inst}}^{1)}$	[-]				1,0						
concrete pry out failure	e (pry-o	ut)											
k-Factor		k ²⁾ k ₃ ¹⁾	[-]	1,0 2,					2,0	0			
concrete edge failure													
effective length of ancho	or I	$I_f = h_{ef}$	[mm]	31	44	35	43	52	43	60	68		
	nor (d _{nom}	[mm]										

¹⁾ Parameter relevant only for design according to CEN/TS 1992-4:2009

Walraven concrete screw WCS1	
Performances	Annex C 1
Characteristic values for WCS1 6, 8 and 10	

²⁾ Parameter relevant only for design according to ETAG 001, Annex C

<u>Table C2: Characteristic values for design method A according to ETAG 001, Annex C</u>
<u>or CEN/TS 1992-4 for WCS1 12 and 14</u>

Anchor size \	VCS1				12		14					
Nominal embe	dment depth h _{no}	m [mm]		h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}			
steel failure f	or tension- and	oad										
		N _{Rk,s}	[kN]		67,0			94,0				
characteristic	oad	$V_{Rk,s}$	[kN]		40,0		56,0					
		k ₂ 1)	[-]		0,8		0,8					
		M ⁰ _{Rk,s}	[Nm]		113,0			185,0				
pull-out failur	е											
characteristic tension load in cracked concrete C20/25		$N_{Rk,p}$	[kN]	12,0	Pull-out		Р	ull-out failure				
	haracteristic tension load in ncracked concrete C20/25		[kN]	16,0	is not de	ecisive	is not decisive					
			C30/37	1,22								
increasing factoring facto	increasing factor		C40/50	1,41								
TOI TVRK,p			C50/60	1,55								
concrete con	e and splitting	failure										
effective anch	orage depth	h _{ef}	[mm]	50	67	80	58	79	92			
factor for	cracked	k _{cr} 1)	[-]			7,2	2					
lactor for	uncracked	k _{ucr} 1)	[-]			10,	1					
concrete	spacing	S _{cr,N}	[mm]			3 x	h _{ef}					
cone failure	edge distance	C _{cr,N}	[mm]			1,5 x	h _{ef}					
splitting	spacing	S _{cr,Sp}	[mm]	150	210	240	180	240	280			
failure	edge distance	C _{cr,Sp}	[mm]	75	105	120	90	120	140			
installation saf	ety factor	$\gamma_2^{(2)}$ $\gamma_{\text{inst}}^{(1)}$	[-]			1,0	0					
concrete pry	out failure (pry-	•										
k-Factor		k ²⁾	[-]	1,0 2,0			1,0 2,0					
concrete edg	e failure											
effective lengt	h of anchor	$I_f = h_{ef}$	[mm]	50	67	80	58	79	92			
outside diame	ter of anchor	d _{nom}	[mm]		12			14				

¹⁾ Parameter relevant only for design according to CEN/TS 1992-4:2009

²⁾ Parameter relevant only for design according to ETAG 001, Annex C

Walraven concrete screw WCS1	
Performances	Annex C 2
Characteristic values for WCS1 12 and 14	

Table C3: Displacements under tension load for WCS1

Anchor	size WCS1				6		8			10		
Nominal	embedment de _l	oth h _{nor}	n [mm]	h _{nom1}	h _{nom2} 55	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1} 55	h _{nom2}	h _{nom3}	
	tension load	N	[kN]	0,95	1,9	2,4	4,3	5,7	4,3	7,9	9,6	
Cracked concrete	diaminanan	δ_{N0}	[mm]	0,3	0,6	0,6	0,7	0,8	0,6	0,5	0,9	
3311313131	displacement	δ∞	[mm]	0,4	0,4	0,6	1,0	0,9	0,4	1,2	1,2	
un-	tension load	N	[kN]	1,9	4,3	3,6	5,7	7,6	5,7	9,5	11,9	
cracked	displacement	δ_{N0}	[mm]	0,4	0,6	0,7	0,9	0,5	0,7	1,1	1,0	
concrete		δ _{N∞}	[mm]	0,4	0,4	0,6	1,0	1,0 0,9		1,2	1,2	
Anchor	size WCS1				12				14			
Nominal	embedment de	nth h	[mm]	h _{nom1}	h _{nom2}	h _{nom}	3 I	h _{nom1}		2 I	h _{nom3}	
Nominal	embeament de _l	Olli IInor	n [iiiiii]	65	85	100		75	100		115	
	tension load	N	[kN]	5,7	9,4	12,3		7,6	12,0		15,1	
Cracked concrete	diamlessment	δ_{N0}	[mm]	0,9	0,5	1,0		0,5	0,8		0,7	
	displacement	δ∞	[mm]	1,0	1,2	1,2		0,9	1,2		1,0	
un-	tension load	N	[kN]	7,6	13,2	17,2		10,6	16,9		21,2	
cracked concrete	-111	δ_{N0}	[mm]	1,0	1,1	1,2		0,9			0,8	
	displacement	δ _{N∞}	[mm]	1,0	1,2	1,2		0,9	1,2		1,0	

Table C4: Displacements under shear load for WCS1

Anchor size WCS1 high perform	nance		(5		8		10				
Naminal ambadment	donth h	[mm]	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}			
Nominal embedment depth h _{nom} [mm]			40 55		45	55	65	55	75	85		
shear load	V	[kN]	3	,3		8,6		16,2				
displacement	$\delta_{\lor 0}$	[mm]	1,	55		2,7		2,7				
	δ√∞	[mm]	3,	10		4,1		4,3				
Anchor size WCS1 high perform	nance		12				14					
Naminal ambadment	donth h	[mmm]	h _{nom1}	h _{nom2}	h _{nom}	3 I	h _{nom1}		2 I	h _{nom3}		
Nominal embedment	aeptn n _{nor}	n [IIIIII]	65	85	100		75	100		115		
shear load	V	[kN]		20,0				30,5				
diantagement	$\delta_{\lor 0}$	[mm]		4,0				3,1				
displacement	δ√∞	[mm]		6,0			4,7					

Walraven concrete screw WCS1	
Performances	Annex C 3
Displacements under tension and shear loads	

Table C5: Characteristic values for seismic category C1

Anchor size V	WCS1			8	10	12	14					
Nominal embe	dment depth h _{non}	[mm]		h _{nom3}								
Nominal ember	ument depth mon	, []		65	85 100 115							
steel failure fo	or tension- and	shear load										
characteristic load		N _{Rk,s,seis}	[kN]	27,0	45,0	67,0	94,0					
		$V_{Rk,s, seis}$	[kN]	8,5	15,3	21,0	22,4					
pull-out failur	'e											
characteristic to	tension load in ete	$N_{Rk,p,seis}$	[kN]	12,0								
concrete con	e failure											
effective anch	orage depth	h _{ef}	[mm]	52	68	92						
concrete	spacing	S _{cr,N}	[mm]		3 x	h _{ef}						
cone failure	edge distance	C _{cr,N}	[mm]		1,5 x	h _{ef}						
installation saf	ety factor	γ ₂	[-]		1,0	0						
concrete pry	out failure (pry-	-out)										
k-Factor		k	[-]	1,0		2,0						
concrete edg	e failure											
effective lengt	h of anchor	I _f = h _{ef}	[mm]	52	68	92						
outside diame	ter of anchor	d _{nom}	[mm]	8	10	12	14					

Walraven concrete screw WCS1	
Performances	Annex C 4
Characteristic values for seismic category C1	

Table C6: Characteristic values of resistance to fire exposure for WCS1

Anchor size V	NCS1			(6		8		10			12				14	
Naminal ambada	rant danth	h _{nom}		1	2	1	2	3	1	2	3	1	2	3	1	2	3
Nominal embedn	nent deptn		[mm]	40	55	45	55	65	55	75	85	65	85	100	75	100	115
steel failure for tension- and shear load ($F_{Rk,s,fi} = N_{Rk,s,fi} = V_{Rk,s,fi}$)																	
Fire resistance class	nce																
R30		$F_{Rk,s,fi30}$	[kN]	0),9		2,4			4,4			7,4		10,3		
R60		F _{Rk,s,fi60} [kN]		0	0,8		1,7		3,3		5,8		8,2				
R90		F _{Rk,s,fi90}	[kN]	0	0,6		1,1		2,3		4,2			5,9			
R120	Characteristic	F _{Rk,s,fi120}	[kN]	0	0,4		0,7			1,7		3,4			4,8		
R30	Resistance	M ⁰ Rks,,fi30	[Nm]	0,7			2,4			5,9		12,3			20,4		
R60		M ⁰ _{Rk,s,fi60}	[Nm]	0),6		1,8		4,5		9,7			15,9			
R90		M ⁰ _{Rk,s,fi90}	[Nm]	0),5		1,2			3,0			7,0			11,6	
R120		M ⁰ Rks,,fi120	[Nm]	0),3		0,9			2,3		5,7				9,4	
edge distance																	
R30 bis R120		C _{Cr, fi}		[mm	m] 2 x h _{ef}												
spacing																	
R30 bis R120		S _{cr, fi}		[mm	1]						4 x h	ef					

The characteristic resistance to fire exposure for pull-out failure, concrete cone failure, concrete pry-out failure and concrete edge failure shall be calculated according to TR 020 or CEN/TS 1992-4. If no value for $N_{Rk,p}$ is given, in the equation 2.4 and 2.5, TR 020 or in equation D.1 and D.2, CEN/TS 1992-4 the value of $N_{Rk,p}^0$ shall be inserted instead of $N_{Rk,p}$.

Walraven concrete screw WCS1

Performances
Characteristic values of resistance to fire exposure

Annex C 5