

Декларация эксплуатационных свойств DoP-13/0455-R-KEX-II

1. Уникальный идентификационный код продукта:

R-KEX-II

Фотография представляет пример данного типа продукта

2. Планируемое применение или применения:

общий тип

для применения в

Клеевые анкеры

Клеевые анкеры со стержнями диаметром от М8 до М30 для выполнения

крепления в бетоне

опция / категория

Нагрузка Материалы **ETAG 001**

статическая или квазистатическая

Клеевые анкеры (инъекционного типа), состоящие из инъекционного раствора R-KEX II, поставляемого в картридже, оснащенном в дозирующий пистолет и выходное сопло, а также стержня с резьбой с размерами от М8 до М30. Стержни изготовлены из оцинкованной гальванически углеродистой стали, нержавеющей стали А4-70 или А4-80: 1.4401, 1.4404, 1.4571 или нержавеющей стали с повышенной устойчивостью к коррозии, с классом механических

свойств 70: 1.4529, 1.4565, 1.4547, с шестигранной гайкой и шайбой.

3. Производитель:

Rawlplug S.A.

ul. Kwidzyńska 6, 51-416 Wrocław, PL

www.rawlplug.com

4. Система оценки и проверки стабильности свойств:

Система 1

5. Европейский документ оценки:

ETAG 001 Металлические анкеры для применения в бетоне. Часть 1 Анкеры - общие сведения и Часть 5 Вклеиваемые анкеры

Категории применения: 1, 2

6. Европейская техническая оценка:

ЕТА-13/0455 издание от 2013-06-26

7. Орган, проводящий техническую оценку:

Instytut Techniki Budowlanej

8. Нотифицированный орган:

1488 на основании:

- оценки потребительских свойств строительного продукта на основании исследований (в том числе отбора образцов), расчетов, табличных значений или описательный документации продукта
- предварительной инспекции завода и заводского производственного контроля
- продолжения надзора, оценки и оценки заводского производственного контроля

выдала сертификат 1488-CPD-0390/W

9. Декларируемые потребительские свойства:

Основная характеристика:

Техническая спецификация					
ETA-13/0455	[1]	Механическая прочность и стабильность	Декларируемые свойства на странице 2		
2 13/0 133	[4]	Безопасность применения	Такие же критерии, как действующие для [1]		

PA	ЗМЕР		M8	M10	M12	M16	M20	M24	M30
		Изн	ос стал	ІИ					
Износ (стали, стальной	прут с рез	ьбой кл	асса ме	ханиче	ских сво	йств 5.8		
Характеристическая несущая способность	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	280
Частичный коэффициент безопасности	Y _{Ms} 1)	[-]				1,50			
Износ стали, стальной прут с резьбой класса механических свойств 8.8									
Характеристическая несущая способность	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	449
Частичный коэффициент безопасности	YMs 1)	[-]				1,50			
Износ стали, стальной прут с резьбой класса механических свойств10.9									
Характеристическая несущая способность	$N_{Rk,s}$	[kN]	37	58	84	157	245	353	561
Частичный коэффициент безопасности	V _{Ms} ¹⁾	γ _{Ms} ¹⁾ [-] 1,40							
Износ с	тали, стальной	прут с резі	ьбой кл	асса ме	ханичес	ких свої	йств12.9		
Характеристическая несущая способность	$N_{Rk,s}$	[kN]	44	70	101	188	294	424	673
Частичный коэффициент безопасности	Y _{Ms} 1)	[-]				1,40			
i I	1 знос стали, пру	т с резьбо	й из не	ржавею	щей ста	ли А4-7	0		
Характеристическая несущая способность	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	393
Частичный коэффициент безопасности	Y _{Ms} ¹⁾	[-]				1,87			
	Износ стали, пру	/т с резьбо	й из не	ржавек	ощей ста	эли А4-8	0		
Характеристическая несущая способность	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	449
Частичный коэффициент безопасности	Y _{Ms} ¹⁾	[-]	1,60						
Износ стали, прут с резьбой из стали с повышенной антикоррозийностью класса 70									
Характеристическая несущая способность	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	393
Частичный коэффициент безопасности	Y _{Ms} ¹⁾	[-]	1,87						
	/шение в резул								
Характеристи	ческая несущая	способнос	тьвпр	еднапря	аженно	и бетоне	е класса (20/25	

i: 40°C/24°C Мекшег [N/mm²] 17 10 17 13 13 12 10 Диапазон температур II: 80°C/50°C Т _{Rk,ucr} [N/mm²] 15 14 15 13 13 12 10 Повышающий коэффициент при текний коэффициент безопасности для 1 эксплуатационной категории С40/50 1,07 1,09 1,09 1,09 1,5 1,8 1,8 1,8 1,8 <td< th=""><th>Диапазон температур</th><th>_</th><th>F</th><th></th><th></th><th>4-</th><th>4-</th><th></th><th>4-</th><th>4.5</th></td<>	Диапазон температур	_	F			4-	4-		4-	4.5	
1.8 80°C/50°C 1.9 1.5		τ _{Rk,ucr}	[N/mm ²]	17	16	17	15	15	13	12	
козффициент при триднапряженном бетоне Частичный козффициент безопасности для 1 зксплуатационной категории Торида пряженном бетоне Торида пряженном бетоне Торида пряженном бетоне Торида пряженном бетоне Торида пряженном безопасности для 2 зксплуатационной категории Торида преднапряженном безопасности для 2 зксплуатационной категории Торида преднапряженном бетоне класса С20/25 Диапазон температур 1: 80e/C/20°C Диапазон температур 1: 80e/C/20°C Диапазон температур 1: 80e/C/20°C Торида преднапряженном бетоне Торида преднапряженном бетоне Торида преднапряженном бетоне класса С20/25 Диапазон температур 1: 80e/C/20°C Торида преднапряженном бетоне класса С20/25 Диапазон температур 1: 80e/C/20°C Торида преднапряженном бетоне класса С20/25 Диапазон температур 1: 80e/C/20°C Торида преднапряженном бетоне класса С20/25 Торида преднапряженном класса С2		$ au_{Rk,ucr}$	[N/mm ²]	15	14	15	13	13	12	10	
тек, исг в преднапряженном бетоне Частичный коэффициент безопасности для 1 эксплуатационной категории Такситичный коэффициент безопасности для 2 эксплуатационной категории Такситичный коэффициент безопасности для 2 эксплуатационной категории Такситичный коэффициент безопасности для 2 эксплуатационной категории Такситичный категории Такситическая несущая способность в zarysowanym бетоне класса С20/25 Диапазон температур 1: 40°C/24°C Диапазон температур 1: 40°C/24°C Диапазон температур 1: 40°C/24°C Повышающий категории Таксит при такциент при такциент при таксит преднапряженном бетоне Такситичный коэффициент при такситическая несущая способность в zarysowanym бетоне класса С20/25 Диапазон температур 1: 40°C/24°C Такциент при такциен	-		C30/37	1,04							
Преднапряженном бетоне С50/60 С50/60 Т1,09 Тастичный коэффициент безопасности для 1 для тубина для 2 для тубина для тубина для тубина для 2 для тубина для тубина для тубина для 2 для тубина для тубина для тубина для тубина для 2 для тубина		Ψ_c	C40/50	1,07							
Коэффициент безопасности для 1 акслуатационной категории Частичный коэффициент безопасности для 2 эксплуатационной категории Таримент безопасности для 1 эксплуатационной категории Таримент при таримент при таримент при таримент преднапряженном бетоне Таримент при таримент при таримент при таримент преднапряженном бетоне Таримент при таримент пр	преднапряженном	-	C50/60				1,09				
Частичный коэффициент при таккуст в преднапряженном бетоне матегории Уарактеристическая несущая способность в zarysowanym бетоне класса C20/25 Диапазон температур Сък,мсг [N/mm²] 7 7 7 7 6 7 7 7 6 7 7 7 7	коэффициент безопасности для 1 эксплуатационной		[-]	1,5	1,5	1,5	1,5	1,5	1,5	1,5	
Диапазон температур т _{Rk,ucr}	коэффициент безопасности для 2 эксплуатационной категории	$V_{Mc} = V_{Mp}$			·	,			·	1,8	
I: 40°C/24°C Ткк,исг [N/mm²] 7 7 7 7 6 - 7 7 7 6 - 7 7 7 7 6 - 7 7 7 7	Характери	стическая несуща	я способн	ость в	zarysov	vanym б	етоне кл	iacca C20	/25		
II: 80°C/50°C Повышающий коэффициент при техн, ист в преднапряженном бетоне С30/37 - 1,0 - С40/50 - 1,0 - - Повышающий коэффициент при техн, ист в преднапряженном бетоне С50/60 - 1,0 - С50/60 - 1,0 - - Частичный коэффициент безопасности для 1 эксплуатационной категории 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,8 1,9 2,0 2,0		$ au_{Rk,ucr}$	[N/mm²]	-	-	7	7	7	6	-	
коэффициент при тRk,ucr в преднапряженном бетоне		$ au_{Rk,ucr}$	[N/mm ²]	-	1	6	6	6	5	-	
тRk,ucr в преднапряженном бетоне			C30/37				1	,0		-	
бетоне C50/60 - 1,0 - Частичный коэффициент безопасности для 1 эксплуатационной категории 1,5 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8<	τRk,ucr в	$oldsymbol{\psi}_{c}$	C40/50	0 -		1,0			-		
коэффициент безопасности для 1 эксплуатационной категории Частичный коэффициент безопасности для 2 эксплуатационной категории Разрушение в результате раскола Эффективная глубина анкеровки hef Расстояние анкера от края основы Отступ между Т,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5			C50/60		-		1	,0		-	
Частичный коэффициент безопасности для 2 эксплуатационной категории 1,8	коэффициент безопасности для 1	V = V	[-]	1,5	1,5	1,5	1,5	1,5	1,5	1,5	
Эффективная глубина анкеровки hef min [mm] 60 70 80 100 120 140 165 вакеровки hef max [mm] 100 120 145 190 240 290 360 Сст, sp для hmin [mm] 2,0 * hef 1,5 * hef Сст, sp для hmin [mm] 2 × hef 1,5 * hef Сст, sp для hmin [mm] 2 × hef Ccr, sp Ccr, sp Отступ между Scr sp [mm] 2,0 * cr, sp	коэффициент безопасности для 2 эксплуатационной			·	•	·	1,8	1,8	1,8	1,8	
анкеровки hef max [mm] 100 120 145 190 240 290 360	244						100	120	140	165	
Расстояние анкера от края основы Ссг, sp для h _{min} [mm] 2,0 * h _{ef} 1,5 * h _{ef} Расстояние анкера от края основы (Ссг, sp для h≥2*hef (Ссг, sp линейной интерполяции) [mm] 2 × h _{ef} Ссг, мр Отступ между Scr, sp [mm] 2,0 * cr, sp 2,0 * cr, sp											
Расстояние анкера от края основы Ссг, sp для hmin <h2><2*hef (Ссг, sp линейной интерполяции) Ссг, sp для h≥2*hef [mm] Ссг, sp для h≥2*hef [mm] Отступ между Ссг, sp для h≥2*hef [mm] Ссг, sp для h≥2*hef [mm]</h2>	eepoblin nei			.50				10			
S _{ct sp}	· ·	Ccr,sp для hmin <h2)<2*hef (Ccr,sp линейной интерполяции)</h2)<2*hef 		h _{min} C _{cr,Np} C _{cr,sp}							

i) в случае отсутствия национальных стандартов
2) h – толщина бетонного элемента; hef – глубина анкеровки

Потребительские свойства определенного выше продукта соответствуют набору декларируемых потребительских свойств. Настоящая декларация потребительских свойств выдается согласно распоряжению (EC) № 305/2011 на исключительную ответственность определенного выше производителя.

От имени производителя расписался(-лась):

Sławomir Jagła Уполномоченный Системы Управления Качеством Wrocław, 11.02.2015.

PEŁNOMOCNIK SYSTEMU ZARZĄDZANIA JAKOŚCIĄ

mgy Sławomir Jagła

Декларация эксплуатационных свойств Dop-13/0454-R-KEX-II

1. Уникальный идентификационный код продукта:

R-KEX-II

Фотография представляет пример данного типа продукта

2. Планируемое применение или применения:

общий тип

Клеевые анкеры

для применения в

Клеевые анкера с дюбелями с внутренней резьбой и арматурой диаметром от

Ø8 до Ø32 для выполнения крепления в бетоне без трещин

опция / категория

ETAG 001

Нагрузка Материалы статическая или квазистатическая

Клеевые анкеры (инъекционного типа), состоящие из инъекционного раствора R-KEX II, поставляемого в картридже, оснащенном в дозирующий пистолет и выходное сопло, а также металлического элемента. Этот элемент изготовлен из оцинкованной стали или стали устойчивой к коррозии (в случае втулки с

внутренней резьбой) или из стального армированного стержня.

3. Производитель:

Rawlplug S.A.

ul. Kwidzyńska 6, 51-416 Wrocław, PL

www.rawlplug.com

4. Система оценки и проверки стабильности свойств:

Система 1

5. Европейский документ оценки:

ETAG 001 Металлические анкеры для применения в бетоне. Часть 1 Анкеры - общие сведения и Часть 5 Вклеиваемые анкеры

Категории применения: 1, 2

6. Европейская техническая оценка:

ЕТА-13/0454 издание от 2013-06-26

7. Орган, проводящий техническую оценку:

Instytut Techniki Budowlanej

8. Нотифицированный орган:

1488 на основании:

- оценки потребительских свойств строительного продукта на основании исследований (в том числе отбора образцов), расчетов, табличных значений или описательный документации продукта
- предварительной инспекции завода и заводского производственного контроля
- продолжения надзора, оценки и оценки заводского производственного контроля

выдала сертификат 1488-CPD-0370/W

9. Декларируемые потребительские свойства:

Основная характеристика:

Техническая спецификация					
ETA-13/0454	[1]	Механическая прочность и стабильность	Декларируемые свойства на странице 2		
2	[4]	Безопасность применения	Такие же критерии, как действующие для [1]		

РАЗМЕР				M8 /12/75	M8 /12/90	M10 /16/75	M10 /16/100	M12 /16/100	M16 /24/125
		Износ	стали						
Износ ст	али, стальной пру	т с резьб	ой кла	сса мех	аничес	ких свої	йств 5.8		
Характеристическая несущая способность	$N_{Rk,s}$	[kN]	10	18	18	29	29	42	78
Частичный коэффициент безопасности	Y _{Ms} 1)	[-]				1,50			
Износ ст	али, стальной пру	т с резьб	ой кла	сса мех	аничесі	ких свої	йств 8.8		
Характеристическая несущая способность	$N_{Rk,s}$	[kN]	16	29	29	46	46	67	126
Частичный коэффициент безопасности	Y _{Ms} 1)	[-]				1,50			
Из	нос стали, прут с ј	резьбой і	из нерх	жавеюц	цей стал	іи А4-7	0		
Характеристическая несущая способность	$N_{Rk,s}$	[kN]	14	26	26	41	41	59	110
Частичный коэффициент безопасности	Y _{Ms} ¹⁾	[-]	1,87						
N:	внос стали, прут с	резьбой	из нер	жавеюц	цей стал	ти А4-8	0		
Характеристическая несущая способность	$N_{Rk,s}$	[kN]	16	29	29	46	46	67	126
Частичный коэффициент безопасности	Y _{Ms} 1)	[-]				1,60			
Износ стали, пр	рут с резьбой из ст	гали с по	вышен	ной ант	икорро	зийнос	тью кла	cca 70	
Характеристическая несущая способность	$N_{Rk,s}$	[kN]	14	26	26	41	41	59	110
Частичный коэффициент безопасности	Y _{Ms} 1)	[-]				1,87			
Разруц	цение в результа	те выры	вания	и износ	а бето	нного к	онуса		
Характеристиче	еская несущая спо	собность	в пред	днапрях	кенном	бетоне	класса	C20/25	
Диапазон температур I: 40°C/24°C	$ au_{Rk,ucr}$	[N/mm²]	8,0	12,0	12,0	12,0	12,0	11,0	10,0
Диапазон температур II: 80°C/50°C	$ au_{Rk,ucr}$	[N/mm²]	7,5	11,0	11,0	11,0	11,0	10,0	9,0
Повышающий		C30/37				1,04			
коэффициент при тRk,ucr в преднапряженном	ψ_c C40,		1,07						
бетоне		C50/60				1,09			
Частичный коэффициент безопасности для 1 эксплуатационной категории	$\gamma_{Mc} = \gamma_{Mp}$	[-]				1,8			

коэффициент безопасности для 2эксплуатационной категории			1,8						
	Разруше	ние в ре	зульта	ате расі	сола				
Эффективная глубина анкеровки hef	h _{ef}	[mm]	75	75	90	75	100	100	125
	c _{cr,sp} для h _{min}	[mm]	2,0 * h _{ef}						1,5 * h _{ef}
Расстояние анкера от края основы	Ccr,sp для hmin <h2)<2*hef (Ccr,sp линейной интерполяции)</h2)<2*hef 	[mm]		2 x h _e		C _{cr,}	ep C.	or,sp	
	с _{сг,sp} для h≥2*h _{ef}	[mm]				C _{cr,Np}			
Отступ между анкерами	S _{cr,sp}	[mm]				2,0 * c _c	r,sp		

1) в случае отсутствия национальных стандартов

2) h – толщина бетонного элемента; hef – глубина анкеровки

Потребительские свойства определенного выше продукта соответствуют набору декларируемых потребительских свойств. Настоящая декларация потребительских свойств выдается согласно распоряжению (EC) № 305/2011 на исключительную ответственность определенного выше производителя.

От имени производителя расписался(-лась):

Sławomir Jagła Уполномоченный Системы Управления Качеством Wrocław, 11.02.2015.

PEŁNOMOCNIK SYSTEMU ZARZĄDZANIA JAKOŚCIĄ

mgy Sławomir Jagła

Декларация эксплуатационных свойств Dop-13/0585-R-KEX-II

1. Уникальный идентификационный код продукта:

R-KEX-II

Фотография представляет пример данного типа продукта

2. Планируемое применение или применения:

общий тип

Клеевые анкеры

для применения в

Вклеиваемые анкерные крепления арматурных стержней диаметром от 8 до 32

мм с применением инъекционного раствора

опция / категория

тегория ETAG 001

Нагрузка Материалы статическая

Вклеиваемая анкеровка арматурных стержней (анкеров или соединений

внахлестку), выполняемая с применением стальных арматурных стержней, в применяемых конструкциях из обыкновенного бетона, с применением инъекционного раствора R-KEX II, ETA, охватывает ребристые арматурные

стержни диаметром от 8 до 32 мм и инъекционный раствор.

3. Производитель:

Rawlplug S.A.

ul. Kwidzyńska 6, 51-416 Wrocław, PL

www.rawlplug.com

4. Система оценки и проверки стабильности свойств:

Система 1

5. Европейский документ оценки:

ETAG 001 Металлические анкеры для применения в бетоне. Часть 1 Анкеры - общие сведения и Часть 5 Вклеиваемые анкеры

Категории применения:

6. Европейская техническая оценка:

ЕТА-13/0585 издание от 2013-06-27

7. Орган, проводящий техническую оценку:

Instytut Techniki Budowlanej

8. Нотифицированный орган:

1488 на основании:

- оценки потребительских свойств строительного продукта на основании исследований (в том числе отбора образцов), расчетов, табличных значений или описательный документации продукта
- предварительной инспекции завода и заводского производственного контроля
- продолжения надзора, оценки и оценки заводского производственного контроля

выдала сертификат 1488-CPD-0391/W

9. Декларируемые потребительские свойства:

Основная характеристика:

Техническая спецификация	Осно	вные требования согласно CPR	Примечания:		
ETA-13/0585	[1]	Механическая прочность и стабильность	Декларируемые свойства на странице 2		
2111 15/0305	[4]	Безопасность применения	Такие же критерии, как действующие для [1]		

Расче				0/25; fyk=500 H/እ		
		$a_1 = a_2 = a_3 = a_4 = a_5 = 1,0$ a_2 или $= a_5 = 0,7$; a_1				
Диаметр прута	Длина анкеровки l _{bd}	Несущая способность на вырывание из основы	Объем строительного раствора V	Длина анкеровки l _{bd}	Несущая способность на вырывание из основы	Объем строительно го раствора V
[mm]	[mm]	[kN]	[ml]	[mm]	[kN]	[ml]
	115	6,6	9	115	9,5	9
	200	11,6	15	200	16,5	15
8	280	16,2	21	220	18,2	17
	360	20,8	27	240	19,8	18
	380	21,9	29	265	21,9	20
	145	10,5	13	145	15,0	13
	200	14,5	18	200	20,6	18
10	300	21,7	27	300	31,0	27
	400	28,9	36	315	32,5	29
	475	34,1	43	330	34,1	30
_	170	14,7	18	170	21,1	18
_	240	20,8	25	240	29,7	25
12	360	31,2	38	360	44,6	38
	480	41,6	51	375	46,5	40
_	500	43,4	53	390	48,3	41
	570	49,1	60	400	49,1	42
_	200	20,2	24	200	28,9	24
	280	28,3	34	280	40,5	34
14	420	42,5	51	420	60,7	51
_	560	56,6	68	440	63,6	53
	665	67,0	80	465	67,0	56
	230	26,6	31	230	38,0	31
	320	37,0	43	320	52,9	43
16	480	55,5	65	480	79,3	65
-	640	74,0	87	500	82,6	68
	760	87,4	103	530	87,4	72
-	285	41,2	60	285	58,8	60
20	400	57,8	85	400	82,6	85
20	600	86,7	127	600	123,9	127
-	800	115,6	170	630	130,1	134
	945	136,5	200	662	136,5	140
	355	64,1	92	355	91,6	92
25	500	90,3	130 194	500	129,0	130
	750 1180	135,5 213,5	444	750 830	193,5 213,3	194 215
	400	80,9	166	400	115,6	166
	600	121,4	249	600	173,4	249
28	840	169,9	349	840	242,8	349
	1325	267,8	550	930	267,7	349
	455	105,2	247	455	150,3	247
	685	158,4	372	685	226,3	372
32	700	161,9	380	700	231,2	380
	1510	307,4	821	1060	349,7	575

Потребительские свойства определенного выше продукта соответствуют набору декларируемых потребительских свойств. Настоящая декларация потребительских свойств выдается согласно распоряжению (EC) № 305/2011 на исключительную ответственность определенного выше производителя.

От имени производителя расписался(-лась):

Sławomir Jagła Уполномоченный Системы Управления Качеством Wrocław, 11.02.2015.

PEŁNOMOCNIK SYSTEMU ZARZĄDZANIA JAKOŚCIĄ

mgy Sławomir Jagła