

The dynamic push-through anchor for an economical serial installation at medium load level

VERSIONS

Zinc-plated steel

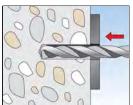
BUILDING MATERIALS

 Concrete C20/25 to C50/60, crakked and non-cracked

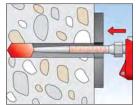
- **APPLICATIONS** hydraulic ramps
- Conveyor belts
- Industrial robots
- cooperation robots and -parts
- Guide rails for elevators

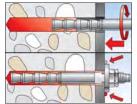
CERTIFICATES

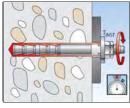
ADVANTAGES

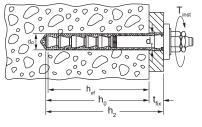

- Medium load level for a variety of applications.
- Pre-assembled anchor rod for fast installation.
- Approved safety by DIBt-Approval for endless numbers of load cycles.
- Easy push-through installation leads to cost effectiveness - especially for serial installations.
- Tight assortment with the size.
- Less spacings and edge distances.
- Drill holes are sealed.

FUNCTIONING


- The injection system suitable for tensile zones consists of the fischer dynamic anchor rod FDA-A dyn and the injection mortar FIS HB.
- FDA is approved push-through instal-
- Extruding the mortar causes the two components to be mixed and activated in the static mixer.
- The mortar bonds the entire surface of the anchor rod with the drill hole wall and seals the drill hole.
- The centring sleeve centres the anchor in the fixture, thus ensuring a safe load application.
- During the setting process, the injection mortar FIS HB fills the annular gap in the fixture, and ensures optimum load distribution. This allows for the absorption of dynamic alternating loads.




INSTALLATION IN CONCRETE WITH FIS HB AND FDA



TECHNICAL DATA

Dynamic-Anchor **FDA**

	Zinc-plated	_	Drill hole	Drill hole diame-	Anchorage	Min max.	Min. drill hole	Width across nut	Sales unit
	steel	oval	diameter	ter in fixture	depth	usable length	depth for through		
		Appr					fixings		
		⋖	d0	df	h _{ef}	t _{fix}	h ₂	○ SW	
	ArtNo.	DIBt	[mm]	[Ø mm]	[mm]	[mm]	[mm]	[mm]	[pcs]
Item	gvz								
FDA-A 12 x 100/25 gvz	536943	•	14	15	100	12 - 25	130	19	10
FDA-A 12 x 100/50 gvz	536944	•	14	15	100	12 - 50	155	19	10
FDA-A 16 x 125/25 gvz	536945	•	18	19	125	16 - 25	155	24	10
FDA-A 16 x 125/50 gvz	536946	•	18	19	125	16 - 50	180	24	10

LOADS

Dynamic-Anchor FDA

zinc-plated steel

Design values for cyclic fatigue loading ¹⁾ of a single anchor in cracked or non-cracked normal concrete of strength class C20/25 ³⁾										Minimum spacings while reducing the load	
Туре	Material fixing	Effective anchorage	Minimum member	Installation torque	Design value of tensile	Design value of shear load			Required spacing for	Min. spacing	Min. edge distance
	element	depth	thickness		load		Max. tension load	Max. shear load			
		h _{ef}	h _{min} 5)	T _{inst}	$\Delta N_{ ext{Ed,max}^{2)}}$	$\Delta V_{Ed,max}^{2)8)}$	△N _{Ed} c ⁶⁾⁷⁾	$^{\Delta V}_{ extbf{Ed}}$ c $^{7)}$	Max. Load s _{cr} 6)	S _{min} 5)	c _{min} ⁵)
		[mm]	[mm]	[Nm]	[kN]	[kN]	[mm]	[mm]	[mm]	[mm]	[mm]
FDA 12 x 100	gvz	100	130	40	11,3	5,1	200	200	300	100	2004)
			200				100	100			1004)
FDA 16 x 125	gvz	125	160	60	18,8	9,1	200	200	375	100	2004)
			250				140	115			100

For the design the complete approval Z-21.3-2058 has to be considered.

- The design values of the cyclic fatigue loading apply for $\geq 5 \times 10^8$ load cycles in accordance with design method I for unknown static lower load. If the static lower load is known and / or for lower numer of load cycles higher load values are possible. The partial safety factors as regulated in the approval are considered. As a single anchor counts e.g. an anchor with a spacing $s \geq 3 \times h_{ef}$. The given load values apply for anchorages in dry and wet concrete and temperatures in the base material up to +50 °C (resp. short-term up to +80 °C) and drill hole cleaning in accordance with the approval.
- 2) For combinations of tensile loads, shear loads, bending moments as well as reduced edge distances or spacings (anchor groups) a detailed anchor design is required.
- ³⁾ For higher concrete strength classes up to C50/60 higher permissible loads may be possible. see approval. The concrete is assumed to be standard-reinforced.
- 4) Without reduction of the shear load.
- ⁵⁾ Intermediate values for h_{min} may be applied in accordance with table 5 of the approval Z-21.3-2058 considering the influence on s_{min} and c_{min}-
- A splitting reinforcement, which limits the crack width to ~ 0,3 mm considering the splitting foreces, is assumed to be available. For an actual edge distance, which is smaller than the characteristic edge distance c_{cr,N}, a longitudinal reinforcement of at least diameter 6 mm in the area of the anchorage depth of the anchor must be available.
- $^{\eta}$ Values apply for predominantly non-static (dynamic) actions. For predominantly static actions differing values can be decisive.
- $^{\mbox{\scriptsize 8)}}$ $\,$ Valid for pulsating loads. For alternating loads see approval.